Name	
Date	
Period	

Lesson 4: What Exactly is Ocean Acidification?

1. Humans have been releasing carbon dioxide (CO ₂) into the atmosphere in large quantities since the Industrial Revolution. CO ₂ is released during combustion: when we drive our cars, power our houses and factories, use electricity, burn things, and cut down trees.	2. The ocean acts as sponge and absorbs about 30 percent of the CO ₂ from the atmosphere. However, as levels of CO ₂ rise in the atmosphere, so do the levels of CO ₂ in the ocean.	3. This is not great news for our ocean or the organisms that make their home there. When CO ₂ mixes with seawater, a chemical reaction occurs that causes the pH of the seawater to lower and become more acidic. This process is called ocean acidification .
4. Even slight changes in pH levels can have large effects on marine organisms, such as fish and plankton.	5. Ocean acidification also reduces the amounts of calcium carbonate minerals available to shell-building organisms, such as plankton, oysters, coral, and sea urchins, to build and maintain their shells and skeletons.	6. The damage to these shell-building organisms can have a negative ripple effect throughout the entire ocean food web.

After you read each section, create a colorful illustration to represent each panel of the story.