How would you create a Punnett Square for this family?

5 Steps of Punnett Square Problems

- Step I: Figure out what is recessive.
- Usually the trait that is dominant is more common.
- Usually the trait that is recessive is less common.
- In this case, we can tell that black/purple is recessive and green is dominant.

5 Steps of Punnett Square Problems

- Step 2: Determine the genotypes of the parents
b One is pretty simple - the purple recessive parent has to have two little letters: aa
- The other green parent has only two possibilities - AA or Aa
- So we know that one parent is aa and the other is either Aa or AA.

5 Steps of Punnett Square Problems

- Step 3: Create the Punnett Squares for each possibility.
- Step 4: Select the Punnett Square that reflects what we see for offspring below.

	A	a
a	$A a$	$a a$
a	$A a$	$a a$

	A	A
a	$A a$	$A a$
a	$A a$	$A a$

5 Steps of Punnett Square Problems

- Step 5: Confirm that you are correct.

You know that the Punnett
Square on the left cannot be correct because $1 / 2$ the offspring are recessive.

	A	A
a	$A a$	$A a$
a	$A a$	$A a$

How would you create a Punnett Square for this family?

Step 1: Figure out what is recessive

- Usually the recessive trait is the less-prevalent trait (not always, but usually).
- In this case we know both green and purple are equally common, but we know from before that green was dominant.

Step 2: Determine the genotypes of the parents

- We know that the purple parent has to be aa
- We know the green parent could either be AA or Aa

Step 3 \& 4: Create Punnett Squares for each possibility; pick the correct square

- Create Punnett Squares for all parent genotype combo possibilities

	A	a
a	Aa	aa
a	Aa	aa

You know that the			
Punnett Square on the left is correct because		A	A
half are the dominant phenotype and half	a	Aa	Aa
are the recessive phenotype.	a	Aa	Aa

Step 5: Confirm that you are correct.

- Be prepared to explain why the other Punnett Square would not work.

	A	a
a	Aa	$a a$
a	Aa	aa

You know that the

Punnett Square on the left is correct because		A	A
half are the dominant phenotype and half	a	Aa	Aa
are the recessive phenotype. The other	a	Aa	Aa

Personal Test: How would you create a Punnett Square for this family?

Possible Combinations

- With simple traits, there are only six possible combinations of parents
- AA xAA
- $A A \times A a$
- $A a \times A a$
- $\mathrm{AA} \times \mathrm{a}$
- $A a \times$ aa
baa x aa
- Each one will have the same results for offspring ratios each time.

Offspring Ratios

- If we have only recessive phenotypes, we know that both parents are homozygous recessive - aa \times aa

- If we have half recessive, half dominant phenotypes, we know that one parent is Heterozygous and one parent is Homozygous Recessive - Aa and aa

Offspring Ratios

- If we have $1 / 4$ recessive and $3 / 4$ dominant phenotypes, we know that both parents are Heterozygous - Aa and Aa

- If all offspring are the dominant phenotype, we know that the combination of parents must be one of the following:
- $A A \times A A$
Aa \times AA
$A A \times$ aa
- Additional combinations would be necessary to determine which it is (except in the last example, where one parent has the recessive phenotype).

