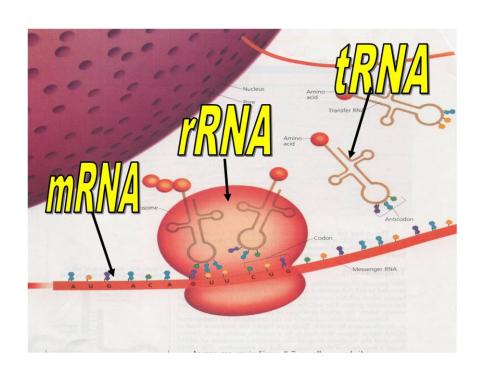

RNA and Protein Synthesis

Central Dogma

The central dogma of molecular biology explains the flow of genetic information, from DNA to RNA, to make a functional product, a protein.


What is RNA?

RNA (Ribonucleic Acid) DNA (Deoxyribonucleic Acid) Deoxyribose 💆 Ribose (sugar) (sugar) Generally Generally Single-stranded* Double-stranded* @AmoebaSisters *few exceptions *few exceptions Adenine Adenine Uracil Thymine Cytosine Cytosine Guanine Guanine

What is RNA and how is it different?

- RNA: ribonucleic acid
- Carries out <u>protein</u>
 <u>synthesis/translation</u>
- Differences from DNA:
 - different sugar(*ribose*)
 - single strand
 - different base
 - Uracil instead of thymine

What are the three types of RNA?

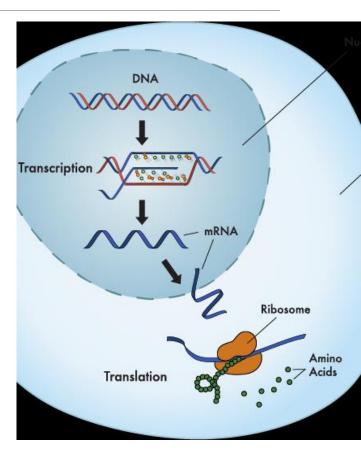
Messenger RNA: (mRNA) carries nucleotide sequence from nucleus to ribosome

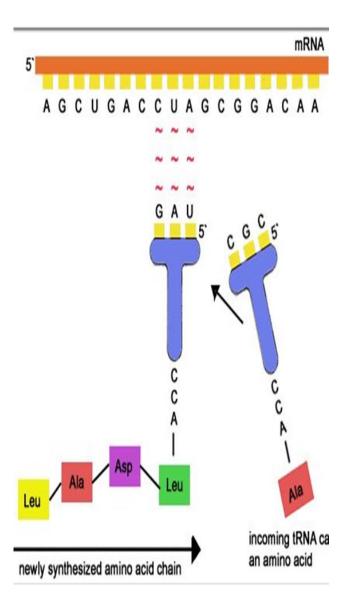
Transfer RNA: (*tRNA*) picks up amino acid in cytoplasm and carries them to ribosome

Ribosomal RNA:

(*rRNA*)found in ribosome, joins mRNA and tRNA; forms protein

Transcription


- Transcription process that makes mRNA from DNA
- •It works roughly the same as DNA replication
- 1. DNA *unzips* into 2 separate strands
 - a) *DNA Helicase* is the enzyme that breaks H-bond
- 2. Free floating RNA bases in the nucleus *pair up* w/unzipped DNA bases
 - a) G and C still pair up
 - b) U replaces T in the RNA
- 3. The strand created is a strand of mRNA.
- 4. DNA closes again.


Practice DNA to RNA

Translation/Protein synthesis

- 1. After detaching from DNA the strand of mRNA leaves the nucleus and goes to the ribosome
 - a) The ribosome is made up of rRNA
- 2. The bases of mRNA is read in codons (groups of 3)
- 3. Each codon codes for an amino acid
- 4. rRNA tells the tRNA which amino acid to bring

Translation Cont.

- 5. tRNA 'knows' what amino acid to bring because it has the complementary RNA sequence.
 - a) Called an anticodon
- 6. The string of amino acids makes a protein