SEX LINKED TRAITS

Essential Questions:
What does "sex-linked" or "X-linked" mean? How are sex-linked conditions inherited? How do you solve sex-linked problems?

Sex-Linked Inheritance

Comparison of the X and Y sex (23 ${ }^{\text {rd }}$ pair) chromosomes

- Sex linked inheritance varies the Mendel number of $3: 1$ by having males a $\mathbf{5 0} / \mathbf{5 0}$ percent chance of inheriting the characteristic on the X chromosome only.
- Remember, Females have XX and Males are XY.
- The Y carries little genetic information, mainly those that contribute to male characteristics. (About 87 genes total.)
- The X carries a lot more genetic information. (About 2000!)

Who is affected by Sex-Linked Disorders?

${ }^{\circ}$ Genes for certain traits are on the \mathbf{X} chromosome only...

- Since Men only receive one X chromosome then they are more likely to inherit these types of disorders.
- Who gives men the X Chromosome?
- Women are somewhat protected since they receive two X chromosomes and are less likely to inherit these types of disorders.
- What do you think happens when they get only one defective copy of an X chromosome?

Sex-Linked Disorders

- Affected males never pass the disease to their sons because there is no male-to-male transmission of the X chromosome.
- Affected males pass the defective X chromosome to all of their daughters, who are described as carriers.
- This means they carry the disease-causing allele but generally show no disease symptoms since a functional copy of the gene is present on the other chromosome.
- Female carriers pass the defective X chromosome to...
- half their sons (who are affected by the disease)

- half their daughters (who are therefore also carriers).
- The other children inherit the normal copy of the chromosome.
- Affected females, with two deficient X chromosomes, are the rare products of a marriage between an affected male and a carrier (or affected) female.

How do you solve Sex-linked Problems?

If Red eyes are dominant and sexlinked, show the cross between a homozygous red eyed female and a white eyed male.

1. You determine which trait (or disorder) is dominant or recessive.
2. Set up a punnett square using $\underline{X X}$ for females and XY for males.
3. Assign alleles for \mathbf{X} only!
4. Solve as usual, keeping in mind that the Y chromosome has no allele!

Genotypes: $\mathrm{X}^{\mathrm{R}} \mathrm{X}^{\mathrm{r}}, \mathrm{X}^{\mathrm{R}} \mathrm{Y}$ Phenotypes: All offspring have red eyes.

Practice: Your Turn!

- Hemophilia is a sex-linked trait where X^{H} gives normal blood clotting and is dominant to the hemophilia allele X^{h}.
- Identify the genotypes of...

1) a woman with normal blood clotting whose father had hemophilia
2) a normal man whose father had hemophilia.

- What is the probability that a mating between these two individuals will produce a child, regardless of sex, that has hemophilia?

Check your work

1) the woman has normal clotting so she has one X^{H} but she got a X^{h} from her father, so she is $\mathbf{X}^{\mathrm{H}} \mathbf{X}^{\mathrm{h}}$
2) the man is $X^{H} Y$ since he got the Y from his father and he is normal so must be $\mathbf{X}^{\mathbf{H}} \mathbf{Y}$

	\mathbf{X}^{H}	\mathbf{X}^{h}
X^{H}	$\mathbf{X}^{H} \mathbf{X}^{H}$	$\mathbf{X}^{H} \mathbf{X}^{h}$
Y	$\mathbf{X}^{H} \mathbf{Y}$	$\mathbf{X}^{\mathbf{h}} \mathbf{Y}$

Genotypes: $1 / 4 \mathbf{X}^{H} \mathbf{X}^{H} \quad$ Phenotypes: $1 / 2$ unaffected girls
$1 / 4 \mathbf{X}^{\mathbf{H}} \mathbf{X}^{\mathrm{h}} \quad 1 / 4$ unaffected boy
$1 / 4 \mathbf{X}^{\mathbf{H}} \mathbf{Y} \quad 1 / 4$ affected boy
$1 / 4 \mathbf{X b}^{\mathbf{h}} \mathbf{Y}$
Notice how girls are "protected" from disorders and carry them.

