SEX LINKED TRAITS

Essential Questions: What does "sex-linked" or "X-linked" mean? How are sex-linked conditions inherited? How do you solve sex-linked problems?

Sex-Linked Inheritance

К

Comparison of the X and Y sex (23rd pair) chromosomes

- Sex linked inheritance varies the Mendel number of <u>3:1</u> by having males a 50/50 percent chance of inheriting the characteristic on the X chromosome only.
- ° Remember, Females have XX and Males are XY.
 - The Y carries little genetic information, mainly those that contribute to male characteristics. *(About 87 genes total.)*
 - The X carries a lot more genetic information. (About 2000!)

Who is affected by Sex-Linked Disorders?

Genes for certain traits are on the X chromosome only...

- Since Men only receive one X chromosome then they are <u>more likely</u> to inherit these types of disorders.
 - ° Who gives men the X Chromosome?
- Women are somewhat protected since they receive two X chromosomes and are less likely to inherit these types of disorders.
 - What do you think happens when they get only one defective copy of an X chromosome?

Sex-Linked Disorders

- Affected males never pass the disease to their sons because there is no male-to-male transmission of the X chromosome.
- Affected males pass the defective X chromosome to **all of their daughters**, who are described as <u>carriers</u>.
 - This means they carry the disease-causing allele but generally show no disease symptoms since a functional copy of the gene is present on the other chromosome.
- Female carriers pass the defective X chromosome to...
 - half their sons (who are affected by the disease)
 - half their daughters (who are therefore also carriers).
 - The other children inherit the <u>normal copy</u> of the chromosome.
- Affected females, with <u>two deficient X</u> <u>chromosomes</u>, are the rare products of a marriage between an affected male and a carrier (or affected) female.

How do you solve Sex-linked Problems?

If Red eyes are dominant and sexlinked, show the cross between a homozygous red eyed female and a white eyed male.

- You determine which trait (or disorder) is dominant or recessive.
- 2. Set up a punnett square using <u>XX</u> for females and <u>XY for males</u>.
 - 1. Assign alleles for X only!
- Solve as usual, keeping in mind that the Y chromosome has <u>no</u> allele!

<u>Genotypes</u>: X^RX^r, X^RY <u>Phenotypes</u>: All offspring have red eyes.

Practice: Your Turn!

- Hemophilia is a sex-linked trait where X^H gives normal blood clotting and is dominant to the hemophilia allele X^h.
- Identify the genotypes of...

1) a woman with normal blood clotting whose father had hemophilia

2) a normal man whose father had hemophilia.

• What is the probability that a mating between these two individuals will produce a child, regardless of sex, that has hemophilia?

Check your work

- 1) the woman has normal clotting so she has one X^H but she got a X^h from her father, so she is **X^HX^h**
- 2) the man is $X^H Y$ since he got the Y from his father and he is normal so must be $X^H Y$

		X ^H	X ^h
	X ^H	X ^H X ^H	X ^H X ^h
	Y	X ^H Y	X ^h Y
Genotype	s: $\frac{1}{4} X^{H} X^{H}$ Ph $\frac{1}{4} X^{H} X^{h}$ $\frac{1}{4} X^{H} Y$ $\frac{1}{4} X^{h} Y$	enotypes: ½ unaffe ¼ unaffec ¼ affected	eted boy

Notice how girls are "protected" from disorders and carry them.