LAB: SEX LINKED TRAITS

Introduction: To simulate a random selection of chromosomes during a lab, a coin flip is usually used. This lab will use pennies to simulate the sex cells of two potential parents.

Part 1: Male Pattern Baldness

- 1. Using masking tape, label two coins One $X^{B}X^{b}$ and one $X^{B}Y$
- 2. The dominant trait is for normal hair growth. The recessive is for baldness (develops later in life).
- 3. What are the phenotypes of the parents?
 - a. Mother: Father:
- 4. Flip both coins to simulate random chromosome selection when making an offspring and fill in the genotypes the chart below. Repeat until the chart is completely filled in.

#	Result	#	Result
1		21	
2		22	
3		23	
4		24	
5		25	
6		26	
7		27	
8		28	
9		29	
10		30	
11		31	
12		32	
13		33	
14		34	
15		35	
16		36	
17		37	
18		38	
19		39	
20		40	

Summary:

Observed Results :	How many females were: $X^{B}X^{B}$	X ^B X ^b
	How many males were: X^BY	X ^b Y

Expected Results

- 1. What are the expected results of the lab? (Show the Punnett Square)
- 2. Do the expected results match with the observed results? Why or why not?
- 3. Is it possible to have two normal haired parents produce an offspring with baldness? Explain
- 4. If the mother is heterozygous for a sex linked trait, she is called a ______ of the trait.
- 5. Assuming no mutations occur, is it possible to have a child with baldness from a mother who is homozygous dominant for baldness? Explain.

The following pedigree tracks hemophilia in a family. Hemophilia is a sex linked disorder where the blood clots slowly and may lead to extensive blood loss or even death. Squares represent males and circles represent females. A non-shaded individual does not have hemophilia and a shaded one has the disorder. Complete the pedigree by filling in all of the genotypes of the individuals based on the known information. P-#2 (The top right square) is completed for you.

- 6. How many affected individuals are present?
- 7. Why is it easy to determine the male genotype?
- 8. What is the genotype of a carrier?
- 9. How many carriers are in the pedigree?
- 10. What is the genotype of F1-#4?